
Data Structures : Activation Records Dr. Raidah Salim

Dynamic Vs. Static memory allocation
 Sometimes we create data structures that are “fixed” and don’t need to grow or
shrink(Static Allocation). At other times, we want to increase and decrease the size of our data
structures to accommodate changing needs(Dynamic Allocation). In the following difference
between static and dynamic allocation.

A program is assigned three independent portions of memory, as address space:
• Code area where code to be executed is stored
• Dynamic Memory Area as known Heap to store variables and objects allocated

dynamically accessed

• Execution Stack to perform computation, store local variables and perform function call
management accessed with a LIFO policy.

Difference between Stack memory and Heap Memory

Data Structures : Activation Records Dr. Raidah Salim

Activation Records(AR)
 Each time a method is called, all the information needed for the method execution is put on

the stack. That information is called the activation record (AR) of the method call. When the call is

completed the corresponding AR is destroyed. Activation records are organized from bottom to

top in memory diagram.

 When recall a program, the storage partition looks like this:

When a when program's main method is started, the partition looks like this:

Activation record for main holds cells for main's local variables and the return address to which
the JVM should jump when main finishes. Say that main calls a method, p. Then, an activation
record holding p's local variables and return address is pushed onto the stack:

If p calls q, the same happens:

When q finishes, its activation record is popped, and the configuration reverts to this figure:

 When p finishes, its record is popped, and main can finish.

Data Structures : Activation Records Dr. Raidah Salim

 Use Stack to Execute call methods

Recursion
A recursive method is a method that contains a statement (or statements) that makes a call to
itself.

How do I write a recursive function?

 any recursive method will include the following three basic elements:
1. A test to stop or continue the recursion.
2. An end case that terminates the recursion.
3. A recursive call(s) that continues the recursion.
Example: recursive factorial method.

 In Java, each time a method (recursive or otherwise) is called, a structure known as an activation
record or activation frame is created to store information about the progress of that invocation of
the method. This frame stores the parameters and local variables specific to a given call of the
method, and information about which command in the body of the method is currently executing.

Q: Who can be called a recursive method?

Ans.: A recursive method can be called either directly recursion, or indirectly recursion through

another method, which may in turn make a call back to the recursive method.

Data Structures : Activation Records Dr. Raidah Salim

Recursion vs. iteration

 Both iteration and recursion are based on a control structure.

 Iteration uses a repetition structure (such as for, while or do/while)

 Recursion uses a selection structure (such as if, if/else or switch).

 Both iteration and recursion involve repetition.

 Iteration explicitly uses a repetition structure.

 Recursion achieves repetition through repeated method calls.

 Iteration and recursion each involve a termination test.

 Recursive solutions are often less efficient, in terms of both time and space, than iterative

solutions

What happens when a function b method called?

int a(int w) {

 return w+w; }

 int b(int x) {

 int z,y;

 …… // other statements

 z = a(x) + y;

 return z; }

Ans.:

1. Since it needs to come back to function b later, it needs to store everything about function

b that is going to need (x, y, z, and the place to start executing upon return, then An

activation record is stored into a stack .

2. Then, x from a is bounded to w from b

3. Control is transferred to function a

4. After function a is executed, the activation record is popped out of the stack

5. All the old values of the parameters and variables in function b are restored and the return

value of function a replaces a(x) in the assignment statement

What happens when a recursive function f(3) is called?

int f(int x) {

 int y;

 if (x==0) return 1;

 else {

 y = 2 * f(x-1);

 return y+1; }

}

Data Structures : Activation Records Dr. Raidah Salim

Example: Write a function int sum (int n) that computes the sum of numbers from 1 to n in two

cases : use loop and recursively

int sum (int n){

 int s = 0;

 for (int i=0; i<n; i++)

 s += i;

 return s;}

How dose it work?

int sum (int n){

 int s;

 if (n == 0) return 0;

 else s = n + sum(n-1)

 return s;}

Data Structures : Activation Records Dr. Raidah Salim

 Use stack to execute recursion method

Example1:

Example2:

Example3:

Data Structures : Activation Records Dr. Raidah Salim

Example4: The factorial function is defined mathematically by:

Programming definition of factorial:

 int fact(int n) {
 if (n==0) return 1; // basis
 else return n*fact(n-1); // recursive part
}

Trace on call fact(5);

Data Structures : Activation Records Dr. Raidah Salim

Example5: The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …. Each number after the
second is the sum of the two preceding numbers. The Fibonacci function is defined mathematically
by:

Data Structures : Activation Records Dr. Raidah Salim

Programming definition of Fibonacci:
 int fib(int n) {
 if (n < 2) return n; // basis
 else return fib(n-1) + fib(n-2); // recursive part
 }
Trace on call fib(5);

Example 6. To find gcd for two number, the following algorithm simply subtracts the smaller
number from the larger. This is done recursively by calling either gcd(m,n m) or gcd(m n,n):
Programming definition of gcd:

 int gcd(int m, int n) {
 if (m==n) return n; // basis
 else if (m<n) return gcd(m,n-m); // recursion
 else return gcd(m-n,n); // recursion
 }

Trace on the call gcd(385, 231).

Example7: The Power function is defined mathematically by:

Data Structures : Activation Records Dr. Raidah Salim

Programming definition of factorial:

double power(double x, int n) {
 if (n == 0) return 1;
 else return x * power(x, n−1);
}

Trace on call Power(3,2)?

Problems:

1. Write a recursive function that returns the sum of the squares of n positive integers.
2. Write a recursive function that returns the sum of n powers of a base b.
3. Write and a recursive function that returns the sum of n elements of an array.
4. Write a recursive function that returns the maximum among n elements of an array.
5. Write a recursive boolean function that determines whether a string is a palindrome. (A

palindrome is a string of characters that is the same as the string obtained from it by
reversing its letters.)

Example : Execute program with objects
public class Controller {
 public static void main(...){
 int x = 2;
 Model m = new Model();
 m.set(x+1);
 System.out.println(m.get()); }
}

public class Model{
 private int val;

 public Model() {
 val = 0;
 }

 public void set(int w){
 Model x = new Model();
 val = w;
 }

 public int get() {
 return val; }
 }

Main's record holds cells for its two local variables, x and m, and the first instruction that executes,
at address 102, saves 2 in x's cell:

Data Structures : Activation Records Dr. Raidah Salim

The next instruction, at address 103, constructs a new Model object. Several steps must be
performed:

1. A Model object is constructed in heap storage, and a cell for its private variable, val, is
allocated therein.

2. The object's constructor method is immediately executed.
3. The address of the newly constructed object is returned as the result of executing the

constructor method.

The picture below shows Step 1: The object is constructed, a cell is allocated for its variable, val,
and its constructor method is started. (The instruction counter in the JVM is reset to 202, the first
instruction in the constructor method.)

The constructor method's activation record is pushed onto the stack. It holds cells for the
method's local variables, and it holds the return address back to main's code.

Data Structures : Activation Records Dr. Raidah Salim

The val variable within the object at address 500 that must be assigned zero:

The return this instruction causes the value in the return-address cell to be copied into the
instruction counter and also the value in this's cell to be returned to its destination in main.

Data Structures : Activation Records Dr. Raidah Salim

The activation record for the constructor method is erased. Now, the assignment to m is
completed:

Next, to execute the method invocation, m.set(x+1). The evaluation of the invocation proceeds
from left to right:

1. determine the target object's (m's) address. (Here, it is 500.)
2. determine the value of the argument (actual parameter). Here, it is 3.
3. start the invoked method.

Data Structures : Activation Records Dr. Raidah Salim

Steps 1 and 2 are shown below:

At Step 3 an activation record for method set is pushed, where its this variable is initialized to 500.
Notice that its argument is saved in the variable for formal parameter, w. And, the return address
is saved. The instruction counter is reset to the first instruction within the invoked method:

The next instruction constructs a second Model object, and the steps seen a moment ago are
repeated. We see a new object constructed and fresh activation record pushed for Model's
constructor method:

Data Structures : Activation Records Dr. Raidah Salim

The constructor executes as seen before, using the same instructions as before, but since this's cell
holds 600, the new object is correctly initialized. The constructor returns its address to its caller,
and its activation record disappears:

Because the execution has returned to the code for set, and because the topmost activation
record holds the variables for set, variable x is correctly assigned:

Data Structures : Activation Records Dr. Raidah Salim

and the correct val field is reset:

Now, set is finished, and execution returns to main:

Data Structures : Activation Records Dr. Raidah Salim

Notice that the object at address 600 still rests in storage, even though it is impossible for the
application to reference it; the object is garbage, and at a later point in the execution, the garbage
collector program within the JVM will examine all of storage and erase all such unreachable
objects.

The next instruction, System.out.println(m.get()), an invocation of get whose this cell holds 500.
Once get returns 3, the println method is invoked.

